Laurens, Dheana (2025) Optimasi penjadwalan perawat berbasis tingkat keahlian dengan algoritma genetika. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (127kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (846kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (6MB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (1MB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
Abstract
Penjadwalan perawat merupakan aspek penting dalam manajemen pelayanan kesehatan yang berdampak langsung pada kualitas perawatan pasien. Permasalahan umum dalam penjadwalan shift meliputi ketidakseimbangan beban kerja, distribusi perawat yang tidak merata berdasarkan tingkat keahlian, serta ketidakpatuhan terhadap batasan operasional rumah sakit. Penelitian ini bertujuan untuk mengoptimalkan penjadwalan perawat berbasis tingkat keahlian dengan menerapkan algoritma genetika. Sistem dirancang untuk menjadwalkan 21 perawat selama satu minggu kerja (7 hari), mencakup 3 shift per hari (pagi, siang, malam) dengan kebutuhan 5 perawat per shift. Setiap perawat diklasifikasikan ke dalam tiga tingkat keterampilan (Skill 1, Skill 2, Skill 3).
Kromosom direpresentasikan sebagai array tiga dimensi [hari][shift][perawat], dan dievaluasi menggunakan fungsi fitness yang mempertimbangkan hard constraints dan soft constraints. Hard constraints meliputi jumlah perawat per shift dan larangan penugasan ganda dalam satu shift, sementara soft constraints mencakup pemerataan distribusi shift, pembatasan jumlah shift dan hari kerja per minggu, serta larangan hari libur berurutan dan shift malam ke pagi. Parameter algoritma genetika yang digunakan meliputi populasi awal sebanyak 200 kromosom, 1000 generasi maksimum, crossover rate 0,8, mutation rate 0,3, dan elitisme sebesar 10 individu terbaik.
Hasil akhir menunjukkan algoritma genetika mampu menghasilkan solusi optimal dengan nilai fitness 0,8509 dan tanpa pelanggaran hard constraint. Jadwal terbaik ditampilkan dalam bentuk visualisasi HTML dan grafik evolusi fitness yang menunjukkan proses konvergensi terjadi antara generasi ke-60 hingga ke-300. Dengan pendekatan ini, sistem terbukti efektif menghasilkan jadwal perawat yang seimbang, realistis, dan sesuai dengan kebutuhan operasional rumah sakit./Nurse scheduling is a crucial aspect of healthcare service management that directly affects the quality of patient care. Common issues in nurse shift scheduling include imbalanced workloads, uneven distribution of nurses based on skill levels, and non-compliance with hospital operational constraints. This study aims to optimize nurse scheduling based on skill levels using a Genetic Algorithm approach. The system is designed to schedule 21 nurses over a one-week period (7 days), covering 3 shifts per day (morning, afternoon, night), with 5 nurses required per shift. Each nurse is classified into one of three skill levels (Skill 1, Skill 2, Skill 3).
Chromosomes are represented as three-dimensional arrays [day][shift][nurse] and are evaluated using a fitness function that considers both hard and soft constraints. Hard constraints include the required number of nurses per shift and the prohibition of duplicate assignments within a single shift. Soft constraints include balancing the distribution of shift types, limiting the number of shifts and workdays per nurse, and avoiding consecutive night-to-morning shifts or sequential off days. The Genetic Algorithm parameters include an initial population of 200 chromosomes, a maximum of 1000 generations, a crossover rate of 0.8, a mutation rate of 0.3, and elitism preserving the top 10 individuals in each generation.
The results demonstrate that the Genetic Algorithm can produce an optimal solution with a fitness score of 0.8509 and no violations of hard constraints. The best schedule is presented through HTML-based visualization and a fitness evolution chart, showing convergence occurring between generation 60 and 300. This approach proves effective in generating a balanced, realistic nurse schedule that aligns with hospital operational needs.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Laurens, Dheana NIM01082200018 dheanalaurens11@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Hareva, David NIDN0316037206 david.hareva@uph.edu |
Uncontrolled Keywords: | penjadwalan perawat; algoritma genetika; tingkat keahlian; fungsi fitness; shift kerja; optimasi jadwal; hard constraints; soft constraints; manajemen rumah sakit. |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Informatics |
Depositing User: | DHEANA CRISTINE LAURENS |
Date Deposited: | 14 Jul 2025 00:51 |
Last Modified: | 14 Jul 2025 00:51 |
URI: | http://repository.uph.edu/id/eprint/69648 |