Prediksi Rehospitalisasi Pasien Asma Pada Rumah Sakit X Di Tangerang Banten

Hermanto, Lourensa Octaviane (2025) Prediksi Rehospitalisasi Pasien Asma Pada Rumah Sakit X Di Tangerang Banten. Universitas Pelita Harapan (118). (Unpublished)

[thumbnail of Title] Text (Title)
Title.pdf.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (109kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (249kB)
[thumbnail of ToC] Text (ToC)
ToC.pdf

Download (262kB)
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (228kB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (525kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (474kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (666kB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (207kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (228kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (14MB)

Abstract

Latar belakang: 5 – 10% pasien asma berkembang menjadi asma berat yang tidak terkontrol. Rehospitalisasi pasien akibat eksaserbasi asma menjadi isu yang kritis dikarenakan belum ada cara yang paling tepat untuk memprediksi pasien dengan resiko tinggi untuk mendapat perawatan kembali di rumah sakit. Tujuan penelitian: Menganalisis faktor yang menjadi penyebab terbesar rehospitalisasi pasien asma pada rumah sakit X di Tangerang Banten dalam pemantauan 12 bulan, menganalisis penentuan high risk patient menggunakan logistic regression atau random forest untuk menjadi cara yang tepat untuk memprediksi penentuan rehospitalisasi pasien asma. Metode: Penelitian observational study dan analisis secara inferensial kepada pasien asma yang dirawat inap ditandai dengan ICD 10 code J45 dan J46 beserta subcodenya di rumah sakit X melalui rekam medis secara retrospektif. Data penelitian diolah menggunakan metode logistic regression dan random forest. Hasil : Diperoleh sebanyak 207 sampel dan 36 diantaranya mengalami rehospitalisasi. Metode Logistic Regression dan Random Forest dapat memprediksi penentuan rehospitalisasi. Namun, metode Random Forest memiliki nilai sensitivitas yang lebih tinggi yaitu 90.5%. Sehingga metode ini lebih baik untuk dijadikan model prediksi rehospitalisasi pasien asma. Lalu dari kedua metode tersebut didapatkan faktor penyebab terbesar pasien mengalami rehospitalisasi adalah jumlah pembelian inhaler controller. / Background: 5–10% of asthma patients progress to severe, uncontrolled asthma. Rehospitalization due to asthma exacerbations is a critical issue, as there is currently no optimal method to accurately predict which patients are at high risk of requiring hospital readmission. Objective: To analyze the main contributing factors to asthma patient rehospitalization at Hospital X in Tangerang, Banten over a 12-month monitoring period, and to evaluate whether logistic regression or random forest can serve as effective methods for predicting high-risk patients for asthma rehospitalization. Method: This study is an observational study with inferential analysis conducted on asthma inpatients identified by ICD-10 codes J45 and J46 and their subcodes at Hospital X, using retrospective medical record data. The data were analyzed using logistic regression and random forest methods. Results: A total of 207 samples were collected, with 36 cases experiencing rehospitalization. Both logistic regression and random forest methods were able to predict rehospitalization. However, Random Forest showed a higher sensitivity value of 90.5%, making it a more suitable model for predicting asthma rehospitalization. Furthermore, both methods identified the number of controller inhaler purchases as the most significant factor contributing to patient rehospitalization.
Item Type: Article
Creators:
Creators
NIM
Email
ORCID
Hermanto, Lourensa Octaviane
01038210013
01038210013@student.uph.edu
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Setyopuspito, Anastasia
0629048901
UNSPECIFIED
Thesis advisor
Setiawan, Benny
0320079003
UNSPECIFIED
Uncontrolled Keywords: Asma, Rehospitalisasi, Prediksi, Regresi logistik, Random Forest
Subjects: R Medicine > R Medicine (General)
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Health Sciences > Pharmacy
Current > Faculty/School - UPH Karawaci > Faculty of Health Sciences > Pharmacy
Depositing User: LOURENSA OCTAVIANE HERMANTO
Date Deposited: 21 Jul 2025 11:12
Last Modified: 21 Jul 2025 11:12
URI: http://repository.uph.edu/id/eprint/69848

Actions (login required)

View Item
View Item