Angelica, Evelyn (2025) Analisis segmentasi pelanggan menggunakan metode machine learning berdasarkan data penjualan online = Customer segmentation analysis using machine learning method based on online sales data. Bachelor thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (118kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (517kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
ToC.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (502kB)
![Chapter1 [thumbnail of Chapter1]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (727kB)
![Chapter2 [thumbnail of Chapter2]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (574kB)
![Chapter3 [thumbnail of Chapter3]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (914kB)
![Chapter4 [thumbnail of Chapter4]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (5MB)
![Chapter5 [thumbnail of Chapter5]](http://repository.uph.edu/style/images/fileicons/text.png)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (499kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (506kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (2MB)
Abstract
Strategi pemasaran yang sesuai diperlukan dalam meningkat penjualan. Oleh karena itu, segmentasi pelanggan dilakukan guna mengetahui karakteristik dari
setiap pelanggan. Penelitian ini bertujuan untuk mengklasifikasi pelanggan ke dalam kelompok guna melihat karakteristik dari setiap pelanggan berdasarkan data penjualan sebuah toko online. Penelitian ini menggunakan 4 metode klasifikasi, yaitu Decision Tree, Random Forest, XGBoost, dan Support Vector Machine, serta menggunakan 1 metode klastering, yaitu Hierarchical Clustering. Metode terbaik yaitu XGBoost dengan nilai akurasi sebesar 70,02% dengan Hour Difference sebagai variabel yang memiliki hubungan tinggi terhadap menentukan pelanggan loyal atau tidak. Metode Hierarchical Clustering menunjukkan bahwa mayoritas pelanggan melakukan transaksi dengan kategori sparepart, tidak menggunakan promo gratis biaya pengiriman, pada hari kerja (Senin - Jumat), dan pada siang hari dengan mayoritas pelanggan berdomisili di Jakarta dan sekitarnya. / An appropriate marketing strategy is needed to increase sales. Therefore, customer segmentation is carried out to determine the characteristics of each customer. This study aims to classify customers into groups to see the characteristics of each customer based on sales data from an online store. This study uses 4 classifications methods, namely Decision Tree, Random Forest, XGBoost, and Support Vector Machine, and uses 1 clustering method, namely Hierarchical Clustering. The best method is XGBoost with an accuracy value of 70.02% and Hour Difference as the variable that has a high relationship in determining whether a customer is loyal or not. The Hierarchical Clustering method shows that most customers make transactions in the spare part category, do not use free shipping promotions, shop on weekdays (Monday to Friday), during the afternoon, and are predominantly located in Jakarta and its surrounding areas.
Item Type: | Thesis (Bachelor) |
---|---|
Creators: | Creators NIM Email ORCID Angelica, Evelyn NIM01112210020 evelynangelica19@gmail.com UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor Ferdinand, Ferry Vincenttius NIDN0323059001 ferry.vincenttius@uph.edu Thesis advisor Nata, Christopher NIDN0307109601 christopher.nata@uph.edu |
Uncontrolled Keywords: | segmentasi pelanggan ; decision tree ; random forest ; xgboost ; support vector machine ; hierarchical clustering |
Subjects: | Q Science > QA Mathematics |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics Current > Faculty/School - UPH Karawaci > Faculty of Science and Technology > Mathematics |
Depositing User: | EVELYN ANGELICA |
Date Deposited: | 25 Jul 2025 03:07 |
Last Modified: | 25 Jul 2025 03:07 |
URI: | http://repository.uph.edu/id/eprint/70115 |