Reducing prediction errors in traffic flow using the cell transmission model

Aryatama, Andrew (2024) Reducing prediction errors in traffic flow using the cell transmission model. Masters thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (107kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (253kB)
[thumbnail of Chapter1] Text (Chapter1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (892kB)
[thumbnail of Chapter2] Text (Chapter2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (773kB)
[thumbnail of Chapter3] Text (Chapter3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (468kB)
[thumbnail of Chapter4] Text (Chapter4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter5] Text (Chapter5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (185kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (548kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)

Abstract

This study aims to optimize vehicle speed predictions on toll roads using the Cell Transmission Model (CTM). Given the challenges posed by dynamic traffic conditions, particularly during peak hours, the research focuses on calibrating the CTM's parameters to enhance prediction accuracy. Simulations conducted on the Tangerang-Jakarta toll road demonstrated a significant reduction in the Mean Absolute Percentage Error (MAPE), from 43.7% to 37.0%. The findings highlight the critical role of parameter optimization in improving the model’s reliability. Furthermore, the study investigates the impact of modifying road topology, such as expanding lanes and adding additional off-ramps, on traffic behavior. While these changes had a modest effect on prediction accuracy, they provided valuable insights into the practical application of traffic modeling. Ultimately, the research contributes to the theoretical advancement of traffic modeling and offers practical recommendations for effective toll road management and congestion mitigation. Future research is encouraged to incorporate additional traffic variables and compare the CTM with other traffic models to further enhance predictive capabilities./Penelitian ini bertujuan untuk mengoptimalkan prediksi kecepatan kendaraan pada jalan tol menggunakan model Cell Transmission Model (CTM). Mengingat tantangan yang ditimbulkan oleh kondisi lalu lintas dinamis, terutama selama jam sibuk, penelitian ini fokus pada kalibrasi parameter-parameter CTM untuk meningkatkan akurasi prediksi. Simulasi yang dilakukan pada jalan tol Tangerang-Jakarta menunjukkan pengurangan signifikan pada Mean Absolute Percentage Error (MAPE), dari 43,7% menjadi 37,0%. Temuan ini menyoroti peran krusial dari optimisasi parameter dalam meningkatkan keandalan model. Selain itu, penelitian ini juga menyelidiki dampak perubahan topologi jalan, seperti penambahan jalur dan ramp tambahan, terhadap perilaku lalu lintas. Meskipun perubahan tersebut hanya memberikan dampak yang moderat terhadap akurasi prediksi, mereka memberikan wawasan berharga terkait aplikasi praktis pemodelan lalu lintas. Secara keseluruhan, penelitian ini berkontribusi pada pengembangan teori pemodelan lalu lintas dan memberikan rekomendasi praktis untuk manajemen jalan tol yang efektif serta mitigasi kemacetan. Penelitian di masa depan disarankan untuk menggabungkan variabel lalu lintas tambahan dan membandingkan CTM dengan model lalu lintas lainnya guna lebih meningkatkan kemampuan prediksi .
Item Type: Thesis (Masters)
Creators:
Creators
NIM
Email
ORCID
Aryatama, Andrew
NIM01679230003
andrewhelenantoo99@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Hardjono, Benny
NIDN0404086401
benny.hardjono@uph.edu
Uncontrolled Keywords: cell transmission model ; speed prediction ; highway simulation ; traffic flow ; macroscopic traffic modelling
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Depositing User: Andrew Ananta Aryatama
Date Deposited: 25 Feb 2025 06:33
Last Modified: 25 Feb 2025 06:33
URI: http://repository.uph.edu/id/eprint/67257

Actions (login required)

View Item
View Item