Analisis sentimen, pemodelan topik, dan visualisasi komentar konter kuliner YouTube terhadap "WNK" Restoran dengan menggunakan Vader untuk mendukung bisnis kuliner

Hamdani, Muhammad Aqsa (2024) Analisis sentimen, pemodelan topik, dan visualisasi komentar konter kuliner YouTube terhadap "WNK" Restoran dengan menggunakan Vader untuk mendukung bisnis kuliner. Masters thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Cover_MUHAMMAD AQSA HAMDAN 1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (167kB)
[thumbnail of Abstract] Text (Abstract)
Abstrak_watermark_MUHAMMAD AQSA HAMDAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (399kB)
[thumbnail of ToC] Text (ToC)
Daftar isi_watermark_MUHAMMAD AQSA HAMDAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (558kB)
[thumbnail of Chapter] Text (Chapter)
Bab 1_watermark_MUHAMMAD AQSA HAMDAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (919kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Bab 2_watermark_MUHAMMAD AQSA HAMDAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (823kB)
[thumbnail of Chapter 3] Text (Chapter 3)
Bab 3_watermark_MUHAMMAD AQSA HAMDAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 4] Text (Chapter 4)
Bab 4_watermark_MUHAMMAD AQSA HAMDAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Bab 5_watermark_MUHAMMAD AQSA HAMDAN.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (339kB)
[thumbnail of Bibliography] Text (Bibliography)
Daftar Pustaka_watermark_MUHAMMAD AQSA HAMDAN.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (539kB)
[thumbnail of Appendices] Text (Appendices)
Lampiran_watermark_MUHAMMAD AQSA HAMDAN.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB)

Abstract

Comments on YouTube culinary content in food vlogger videos are a valuable source of information to support the development of culinary businesses. Sentiment analysis offers an automated solution to categorize reviews into positive, neutral, or negative sentiments. This study applies the Valence Aware Dictionary for Sentiment Reasoning (VADER) model to Indonesian comments discussing culinary content related to the "WNK" restaurant, by modifying VADER to be able to identify sentiment polarity in Indonesian more accurately. This study uses two sentiment analysis models, namely VADER Default and VADER Custom, which modify the English-based VADER polarity lexicon to classify Indonesian text sentiment. Comment data from three YouTube videos are processed through pre-processing stages, such as text cleaning, tokenization, normalization, and stopword removal. Model performance is evaluated using accuracy, precision, recall, and F1-score, while word cloud and N-gram analysis are used to identify main themes and dominant phrases. The results show that the VADER Custom Indonesian model significantly improves the performance of Indonesian text sentiment analysis. This improvement is proven through the polarity distribution value of 5,20% compared to the VADER Default model of 2,24%, as well as the evaluation of the Precision value of 76,94%, Recall 76,48%, and F1 Score 76,68%. The use of topic analysis and visualization provides useful insights for business actors to improve service quality, with a focus on price, food quality, and cleanliness. / Komentar pada konten kuliner YouTube di video food vlogger merupakan sumber informasi yang berharga dalam mendukung pengembangan bisnis kuliner. Analisis sentimen menawarkan solusi otomatis untuk mengkategorikan ulasan ke dalam sentimen positif, netral, atau negatif. Penelitian ini menerapkan model Valence Aware Dictionary for Sentiment Reasoning (VADER) pada komentar berbahasa Indonesia yang membahas konten kuliner terkait restoran "WNK", dengan melakukan modifikasi pada VADER agar mampu mengidentifikasi polaritas sentimen dalam Bahasa Indonesia secara lebih akurat. Penelitian ini menggunakan dua model analisis sentimen, yaitu VADER Default dan VADER Custom, yang memodifikasi leksikon polaritas VADER berbasis bahasa Inggris untuk mengklasifikasikan sentimen teks Bahasa Indonesia. Data komentar dari tiga video YouTube diproses melalui tahapan pra-pemrosesan, seperti pembersihan teks, tokenisasi, normalisasi, dan penghapusan stopword. Kinerja model dievaluasi menggunakan akurasi, precision, recall, dan F1-score, sementara analisis word cloud dan N-gram digunakan untuk mengidentifikasi tema utama dan frasa dominan. Hasil penelitian menunjukkan bahwa model VADER Custom Bahasa Indonesia secara signifikan meningkatkan kinerja analisis sentimen teks Bahasa Indonesia. Peningkatan ini dibuktikan melalui nilai distribusi polaritas sebanyak 5,20% dibandingkan model VADER Default 2,24%, serta evaluasi nilai Precision 76,94%, Recall 76,48%, dan F1 Score 76,68%. Pemanfaatan analisis topik dan visualisasi memberikan wawasan yang berguna bagi pelaku bisnis untuk meningkatkan kualitas layanan, dengan fokus pada harga, kualitas makanan, dan kebersihan.
Item Type: Thesis (Masters)
Creators:
Creators
NIM
Email
ORCID
Hamdani, Muhammad Aqsa
NIM01679230001
UNSPECIFIED
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Tjahyadi, Hendra
NIDN0410076901
UNSPECIFIED
Uncontrolled Keywords: Analisis Sentiment ; YouTube ; VADER Bahasa Indonesia ; Bisnis Kuliner
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7885-7895 Computer engineering. Computer hardware
Divisions: University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics
Depositing User: Phillips Iman Heri Wahyudi
Date Deposited: 26 Feb 2025 07:19
Last Modified: 26 Feb 2025 07:19
URI: http://repository.uph.edu/id/eprint/67328

Actions (login required)

View Item
View Item