Rangganata, Ervandy (2024) Comparative study of a novel machine learning augmented mobile acoustic uroflowmetry and conventional uroflowmetry. Masters thesis, Universitas Pelita Harapan.
![Title [thumbnail of Title]](http://repository.uph.edu/style/images/fileicons/text.png)
cover - Ervandy Rangganata.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (90kB)
![Abstract [thumbnail of Abstract]](http://repository.uph.edu/style/images/fileicons/text.png)
abstract - Ervandy Rangganata-10.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (103kB)
![ToC [thumbnail of ToC]](http://repository.uph.edu/style/images/fileicons/text.png)
toc - Ervandy Rangganata-9.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (135kB)
![Chapter 1 [thumbnail of Chapter 1]](http://repository.uph.edu/style/images/fileicons/text.png)
chapter 1 - Ervandy Rangganata-8.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (114kB)
![Chapter 2 [thumbnail of Chapter 2]](http://repository.uph.edu/style/images/fileicons/text.png)
chapter 2 - Ervandy Rangganata-7.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (516kB)
![Chapter 3 [thumbnail of Chapter 3]](http://repository.uph.edu/style/images/fileicons/text.png)
chapter 3 - Ervandy Rangganata-6.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (147kB)
![Chapter 4 [thumbnail of Chapter 4]](http://repository.uph.edu/style/images/fileicons/text.png)
chapter 4 - Ervandy Rangganata-5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (824kB)
![Chapter 5 [thumbnail of Chapter 5]](http://repository.uph.edu/style/images/fileicons/text.png)
chapter 5 - Ervandy Rangganata-4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (30kB)
![Bibliography [thumbnail of Bibliography]](http://repository.uph.edu/style/images/fileicons/text.png)
bibliography - Ervandy Rangganata-3.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (115kB)
![Appendices [thumbnail of Appendices]](http://repository.uph.edu/style/images/fileicons/text.png)
appendices - Ervandy Rangganata-2.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (871kB)
Abstract
Uroflowmetri adalah pengukuran volume urin non-invasif yang dikeluarkan dari
waktu ke waktu. Uroflowmetri konvensional telah menjadi modalitas utama
pengukuran aliran urin dalam beberapa waktu. Namun, metode ini mengharuskan
pasien untuk hadir di rumah sakit atau tempat perawatan kesehatan beberapa kali,
terkadang membuat pasien merasa tidak nyaman menjalani pemeriksaan dan
membuat profil berkemih harian yang tidak akurat. Uroflowmetri akustik (sonouroflowmetri)
telah diusulkan sebagai metode alternatif pengukuran aliran urin
karena portabilitasnya. Penelitian ini bertujuan untuk mengevaluasi akurasi dan
reliabilitas sono-uroflowmetri dibandingkan dengan uroflowmetri konvensional.
Teknik pembelajaran mendalam untuk analisis gambar memungkinkan pembuatan
alat analisis data eksplorasi yang mudah digunakan. Menggunakan toolbox
pemrograman visual Orange (http://orange.biolab.si), studi ini menyederhanakan
analisis gambar dengan menggabungkan deep learning, proses pembelajaran mesin,
dan visualisasi data. Orange memfasilitasi pengembangan alur kerja untuk analisis
data dengan menyusun komponen untuk pretreatment data, visualisasi, dan
pemodelan. Studi ini menggunakan Orange dengan komponen yang memprofilkan
foto dengan vektor fitur menggunakan jaringan konvolusional dalam yang telah
dilatih sebelumnya. Vektor ini digunakan dalam pengelompokan dan klasifikasi
citra di dalam kerangka kerja yang memfasilitasi penambangan koleksi citra oleh
pengguna pemula dan berpengalaman. Volume urin, durasi pengosongan, laju
aliran maksimum, dan laju aliran rata-rata diidentifikasi dan digunakan untuk
menentukan hasil pengukuran. Sonouroflowmetri menunjukkan korelasi yang
signifikan dibandingkan dengan uroflowmetri konvensional. Oleh karena itu dapat
digunakan sebagai alternatif untuk uroflowmetri konvensional. Studi ini
mendemonstrasikan kegunaan alat ini dalam analisis citra rekaman aliran urin
dalam membedakan pola berkemih normal dan abnormal pasien. / Uroflowmetry is a non-invasive measurement of the volume of urine excreted over
time. Conventional uroflowmetry has become the main modality of urine flow
measurement within times. However, this method requires the patient to be present
in the hospital or healthcare setting on multiple occasions, sometimes making
patients feel uncomfortable undergoing the examination and inaccurately profiling
daily micturition. Mobile acoustic uroflowmetry (sono-uroflowmetry) has been
proposed as an alternative method of urine flow measurement due to its portability.
This study aims to evaluate the accuracy and reliability of sono-uroflowmetry
compared to conventional uroflowmetry. Deep learning techniques for image
analysis allow for the creation of exploratory data analysis tools that are userfriendly.
Using the visual programming toolbox Orange (http://orange.biolab.si),
we simplify image analysis by combining deep-learning embedding, machine
learning processes, and data visualization. Orange facilitates the development of
workflows for data analysis by assembling components for data pretreatment,
visualization, and modeling. We equipped Orange with components that profile
photos with vectors of features using deep convolutional networks that have been
pre-trained. These vectors are utilized in image clustering and classification inside
a framework that facilitates the mining of image collections by both novice and
seasoned users.. Voided volume, voiding duration, maximum flow rate, and average
flow rate were identified and used to determine measurement outcomes.
Sonouroflowmetry showed significant correlations compared to conventional
uroflowmetry. Hence it can be used as an alternative to conventional uroflowmetry.
We demonstrate the utility of the tool in image analysis of urinary streamrecordings
in differing the normal and abnormal voiding pattern of the patients.
Item Type: | Thesis (Masters) |
---|---|
Creators: | Creators NIM Email ORCID Rangganata, Ervandy NIM01679210005 UNSPECIFIED UNSPECIFIED |
Contributors: | Contribution Contributors NIDN/NIDK Email Thesis advisor UNSPECIFIED UNSPECIFIED UNSPECIFIED |
Uncontrolled Keywords: | Uroflowmetri konvensional ; uroflowmetri akustik ; pembelajaran mesin ; deep learning |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | University Subject > Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics Current > Faculty/School - UPH Karawaci > School of Information Science and Technology > Master of Informatics |
Depositing User: | Phillips Iman Heri Wahyudi |
Date Deposited: | 26 Mar 2025 02:11 |
Last Modified: | 26 Mar 2025 02:11 |
URI: | http://repository.uph.edu/id/eprint/67952 |