Evaluasi pendekatan hybrid prophet-lstm dalam peramalan permintaan listrik: studi kasus britania raya

Young, Jian Jeraus (2024) Evaluasi pendekatan hybrid prophet-lstm dalam peramalan permintaan listrik: studi kasus britania raya. Bachelor thesis, Universitas Pelita Harapan.

[thumbnail of Title] Text (Title)
Title.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (174kB)
[thumbnail of Abstract] Text (Abstract)
Abstract.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (475kB)
[thumbnail of Chapter 1] Text (Chapter 1)
Chapter1.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (873kB)
[thumbnail of Chapter 2] Text (Chapter 2)
Chapter2.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 3] Text (Chapter 3)
Chapter3.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
[thumbnail of Chapter 4] Text (Chapter 4)
Chapter4.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB)
[thumbnail of Chapter 5] Text (Chapter 5)
Chapter5.pdf
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (506kB)
[thumbnail of Bibliography] Text (Bibliography)
Bibliography.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (594kB)
[thumbnail of Appendices] Text (Appendices)
Appendices.pdf
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)

Abstract

Listrik memainkan peran penting dalam menopang ekonomi modern, mulai dari industri hingga kebutuhan rumah tangga. Peningkatan signifikan dalam permintaan listrik menuntut peramalan beban yang akurat untuk mendukung pengelolaan pasokan dan permintaan secara efektif. Penelitian ini mengusulkan pendekatan hibrida dengan menggabungkan model Long Short-Term Memory (LSTM) dan Prophet untuk meramalkan konsumsi listrik di Britania Raya. LSTM efektif menangkap pola kompleks pada data deret waktu, sementara Prophet menawarkan penanganan tren musiman dan pencilan yang fleksibel. Dengan menggunakan data sekunder dari National Grid ESO (2009–2024), model hibrida ini dievaluasi berdasarkan metrik Root Mean Square Error (RMSE) dan Mean Absolute Percentage Error (MAPE). Pendekatan hibrida menghasilkan RMSE sebesar 3738.62 MW dan MAPE 12.75%, yang lebih baik dibandingkan Prophet (RMSE 4324.75 MW, MAPE 20.65%) dan ARIMA (RMSE 4556.37 MW, MAPE 16.63%). Temuan ini menunjukkan bahwa pendekatan hibrida Prophet-LSTM dapat meningkatkan akurasi peramalan beban listrik secara signifikan. Penelitian ini memberikan kontribusi pada pengelolaan energi yang lebih efisien dan menawarkan referensi untuk pengembangan metode peramalan beban listrik yang lebih andal di masa depan./ Electricity plays a crucial role in sustaining the modern economy, from industrial operations to household needs. The significant increase in electricity demand necessitates accurate load forecasting to support supply and demand management by energy providers. This study proposes a hybrid approach by combining Long Short-Term Memory (LSTM) and Prophet models to forecast electricity consumption in the United Kingdom. LSTM excels at capturing complex patterns in time series data, while Prophet offers flexible handling of seasonal trends and outliers. By leveraging the strengths of both methods, this research evaluates the Prophet-LSTM hybrid approach using metrics such as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Secondary data from National Grid ESO (2009–2024) is utilized to build and test the model. The hybrid model produces RMSE and MAPE at 3738.62 MW and 12.75% respectively, which performed better than Prophet (RMSE 4324.75 MW, MAPE 20.65%) and ARIMA (RMSE 4556.37 MW, MAPE 16.63%). The findings are expected to make a significant contribution to energy management and serve as a critical reference for the development of more accurate load forecasting methods in the future.
Item Type: Thesis (Bachelor)
Creators:
Creators
NIM
Email
ORCID
Young, Jian Jeraus
NIM03081210009
jianjerausyoung37@gmail.com
UNSPECIFIED
Contributors:
Contribution
Contributors
NIDN/NIDK
Email
Thesis advisor
Mitra, Aditya Rama
NIDN0305096901
aditya.mitra@uph.edu
Uncontrolled Keywords: Prediksi listrik; pembelajaran hibrida; listrik; prophet; longshort term memory
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: University Subject > Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems
Current > Faculty/School - UPH Medan > School of Information Science and Technology > Information Systems
Depositing User: Jian Jeraus Young
Date Deposited: 25 Apr 2025 01:31
Last Modified: 25 Apr 2025 01:31
URI: http://repository.uph.edu/id/eprint/68176

Actions (login required)

View Item
View Item